Interpolated Measures with Bounded Density in Metric Spaces Satisfying the Curvature-dimension Conditions of Sturm

نویسنده

  • TAPIO RAJALA
چکیده

We construct geodesics in the Wasserstein space of probability measures along which all the measures have an upper bound on their density that is determined by the densities of the endpoints of the geodesic. Using these geodesics we show that a local Poincaré inequality and the measure contraction property follow from the Ricci curvature bounds defined by Sturm. We also show for a large class of convex functionals that a local Poincaré inequality is implied by the weak displacement convexity of the functional.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Transport and Ricci Curvature for Metric-measure Spaces

We survey work of Lott-Villani and Sturm on lower Ricci curvature bounds for metric-measure spaces. An intriguing question is whether one can extend notions of smooth Riemannian geometry to general metric spaces. Besides the inherent interest, such extensions sometimes allow one to prove results about smooth Riemannian manifolds, using compactness theorems. There is a good notion of a metric sp...

متن کامل

Sharp and Rigid Isoperimetric Inequalities in Metric-measure Spaces with Lower Ricci Curvature Bounds

We prove that if (X, d,m) is a metric measure space with m(X) = 1 having (in a synthetic sense) Ricci curvature bounded from below by K > 0 and dimension bounded above by N ∈ [1,∞), then the classic Lévy-Gromov isoperimetric inequality (together with the recent sharpening counterparts proved in the smooth setting by E. Milman for any K ∈ R, N ≥ 1 and upper diameter bounds) hold, i.e. the isoper...

متن کامل

Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds

The aim of the present paper is to bridge the gap between the Bakry-Émery and the Lott-Sturm-Villani approaches to provide synthetic and abstract notions of lower Ricci curvature bounds. We start from a strongly local Dirichlet form E admitting a Carré du champ Γ in a Polish measure space (X,m) and a canonical distance dE that induces the original topology of X. We first characterize the distin...

متن کامل

Local Cut Points and Metric Measure Spaces with Ricci Curvature Bounded Below

A local cut point is by definition a point that disconnects its sufficiently small neighborhood. We show that there exists an upper bound for the degree of a local cut point in a metric measure space satisfying the generalized Bishop–Gromov inequality. As a corollary, we obtain an upper bound for the number of ends of such a space. We also obtain some obstruction conditions for the existence of...

متن کامل

Completeness in Probabilistic Metric Spaces

The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011